Weak Normality and Strong t-closedness of Generalized Power Series Rings
نویسندگان
چکیده
منابع مشابه
Simplicity of skew generalized power series rings
A skew generalized power series ring R[[S, ω]] consists of all functions from a strictly ordered monoid S to a ring R whose support contains neither infinite descending chains nor infinite antichains, with pointwise addition, and with multiplication given by convolution twisted by an action ω of the monoid S on the ring R. Special cases of the skew generalized power series ring construction are...
متن کاملUnique Factorization in Generalized Power Series Rings
Let K be a field of characteristic zero and let K((R≤0)) denote the ring of generalized power series (i.e., formal sums with well-ordered support) with coefficients in K, and non-positive real exponents. Berarducci (2000) constructed an irreducible omnific integer, in the sense of Conway (2001), by first proving that an element of K((R≤0)) that is not divisible by a monomial and whose support h...
متن کاملPartial Skew generalized Power Series Rings
In this paper, using generalized partial skew versions of Armendariz rings, we study the transfer of left (right) zip property between a ring R and partial skew generalized power series rings
متن کاملGorenstein Weak Dimension of a Coherent Power Series Rings
We compute the Gorenstein weak dimension of a coherent power series rings over a commutative rings and we show that, in general, Gwdim (R) ≤ 1 does not imply that R is an arithmetical ring.
متن کاملStrong Normality and Generalized Copeland–erdős Numbers
We prove that an infinite class of Copeland-Erdős numbers is not strongly normal and provide the analogous result for Bugeaud’s Mahler-inspired extension of the Copeland-Erdős numbers. After the presentation of our results, we o↵er several open questions concerning normality and strong normality.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Kyungpook mathematical journal
سال: 2008
ISSN: 1225-6951
DOI: 10.5666/kmj.2008.48.3.443